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Societal Impact Statement
Biodiversity is essential to food security and nutrition locally and globally. By review-
ing the global state of edible plants and highlighting key neglected and underutilized 
species (NUS), we attempt to unlock plant food resources and explore the role of 
fungi, which along with the wealth of traditional knowledge about their uses and 
practices, could help support sustainable agriculture while ensuring better protection 
of the environment and the continued delivery of its ecosystem services. This work 
will inform a wide range of user communities, including scientists, conservation and 
development organizations, policymakers, and the public of the importance of biodi-
versity beyond mainstream crops.
Summary 
As the world's population is increasing, humanity is facing both shortages (hunger) 
and excesses (obesity) of calorie and nutrient intakes. Biodiversity is fundamental to 
addressing this double challenge, which involves a far better understanding of the 
global state of food resources. Current estimates suggest that there are at least 7,039 
edible plant species, in a broad taxonomic sense, which includes 7,014 vascular plants. 
This is in striking contrast to the small handful of food crops that provide the major-
ity of humanity's calorie and nutrient intake. Most of these 7,039 edible species have 
additional uses, the most common being medicines (70%), materials (59%), and envi-
ronmental uses (40%). Species of major food crops display centers of diversity, as pre-
viously proposed, while the rest of edible plants follow latitudinal distribution patterns 
similarly to the total plant diversity, with higher species richness at lower latitudes. 
The International Union for Conservation of Nature Red List includes global conser-
vation assessments for at least 30% of edible plants, with ca. 86% of them conserved 
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1  | INTRODUC TION

As the world's population is expected to reach 10 billion by 2050, hu-
manity is increasingly facing a double burden of malnutrition, com-
prising of a shortage of calories (hunger) at one end of the spectrum 
and excess at the other one (obesity; Abarca-Gómez et al., 2017; 
Alexandratos & Bruinsma, 2012; FAO, IFAD, UNICEF, WFP, & WHO, 
2019). Addressing these challenges will require an increase of food 
production globally, which cannot be achieved by simply expand-
ing industrial agriculture through land conversion to the detriment 
of the surrounding environment and already declining biodiversity 
(Jacobsen, Sørensen, Pedersen, & Weiner, 2013; Padulosi, Heywood, 
Hunter, & Jarvis, 2011; Sunderland, 2011), and a shift to health-
ier diets (Abarca-Gómez et al., 2017; FAO, IFAD, UNICEF, WFP, & 
WHO, 2019). In addition, around 36% (by calorific value) of arable 
crops such as wheat, maize, and sorghum are consumed by live-
stock and this requires one-third of the total area currently utilized 
for arable farming (Cassidy, West, Gerber, & Foley, 2013; Herrero 
et al., 2013). Overall, 26% (3.4 billion ha) and 4% (0.5 billion ha) of the 
Earth's ice-free surface is used for livestock grazing and livestock 
feed production, respectively (Foley et al., 2011). This is a complex 
situation, as there is a need to ensure the sustainable production of 
safe and nutritious food, while protecting biodiversity, to allow the 
delivery of other goods and ecosystem services, which are directly 
and indirectly critical for human well-being. Furthermore, it is neces-
sary to facilitate societal adaptation to climate-driven environmental 
changes that can disrupt food production and people's livelihoods 
(Alae-Carew et al., 2020; FAO, 2019; Jacobsen et al., 2013).

Of the thousands of plant species that have been cultivated since 
agriculture began around 12,000 years ago, only about 200 have 
been extensively domesticated, leading to dependence on a narrow 
range of genetic diversity of crops (Meyer, Duval, & Jensen, 2012; 
Vaughan, Balazs, & Heslop-Harrison, 2007). Together, wheat, rice, 
and maize alone provide almost half of the world's food calorie in-
take, making our food supply extremely vulnerable (Reeves, Thomas, 
& Ramsay, 2016). Plant-breeding programs narrowed the focus to 
large-seeded, high-yielding varieties of crops (Gruber, 2017), whose 
global production intensified (higher yield by unit of land area) during 

the Green Revolution of the 1960s–1980s. This period of crop inten-
sification was also aided by developments in the use of chemical fer-
tilizers, irrigation techniques, and pesticides (Pingali, 2012). Although 
the intensification of agriculture led to reduced pressure on natural 
ecosystems (Godfray et al., 2010; Green, Cornell, Scharlemann, & 
Balmford, 2005), it created multiple unintended environmental con-
sequences such as water pollution, soil degradation, agrochemical 
runoff, increased susceptibility to pests and diseases, and biodiver-
sity loss (Pingali, 2012). Crop intensification also decreased dietary 
diversity along with food cultures, and many traditional crops that 
were important sources of critical micronutrients (such as iron, 
provitamin A, and zinc) for poor communities were lost (Webb & 
Eiselen, 2009). However, there is now increasing recognition given 
to the importance of biodiversity for food and nutrition security, 
local livelihoods, and sustainable development (Bala, Hoeschle-
Zeledon, Swaminathan, & Frison, 2006; FAO, 2019). Consequently, 
the benefits of using underutilized traditional crops, and exploring 
more sustainable production methods to grow mainstream crops, 
are being widely promoted (FAO & WHO, 2018).

Neglected and underutilized species (NUS) include wild, domes-
ticated, or semi-domesticated plants, whose potential to improve 
people's livelihoods, as well as food security and sovereignty, is not 
fully realized because of their limited competitiveness with com-
modity crops in mainstream agriculture. Nevertheless, they are lo-
cally important to people and often adapted to unique climatic and 
environmental conditions (Padulosi et al., 2011). Bringing NUS into 
mainstream agriculture could strengthen the resilience and sustain-
ability of food production systems (FAO, 2018; Padulosi, Cawthorn, 
et al., 2019; Raneri, Padulosi, Meldrum, & King, 2019). In addition, 
NUS often provide benefits beyond food, by virtue of being multi-
purpose. For instance, they often yield other useful products such 
as timber, fibers, or medicines, and contribute to safeguarding bio-
cultural diversity (Cámara-Leret et al., 2019). Increasing the inherent 
value of wild species as NUS and the ecosystem services that na-
tive species can provide to surrounding environments (such as food 
sources for pollinators and birds, maintenance of water supply and 
soils, and control of pests and diseases), will support biodiversity 
protection and provide cultural services (Díaz et al., 2020). Many 
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ex situ. However, at least 11% of those species recorded are threatened. We highlight 
multipurpose NUS of plants from different regions of the world, which could be key 
for a more resilient, sustainable, biodiverse, and community participation-driven new 
“green revolution.” Furthermore, we explore how fungi could diversify and increase 
the nutritional value of our diets. NUS, along with the wealth of traditional knowl-
edge about their uses and practices, offer a largely untapped resource to support 
food security and sustainable agriculture. However, for these natural resources to be 
unlocked, enhanced collaboration among stakeholders is vital.
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NUS are referred to as “minor” or “orphan” crops because of their 
limited role in larger agricultural production systems and have been 
“neglected” by agricultural researchers, plant breeders, and policy-
makers alike. Some have been major crops in the past, but are now 
displaced by modern commercial varieties and this is especially the 
case for many millets (which is a common term for a group of cereals 
in the Panicodeae and Chlorideae grass subfamilies) and less well-
known pulses such as lablab (Reed & Ryan, 2019). Many of these 
varieties and species, along with a wealth of traditional knowledge 
about their use and cultivation, are being lost at an alarming rate (Díaz 
et al., 2020). Access to NUS is also important because domesticated 
legumes (Fernández-Marín et al., 2014), cereals (Hebelstrup, 2017), 
other crops that contribute to food security (Tamrat et al., 2020), 
and fungi (Stojković et al., 2013) can vary in their nutritional, antioxi-
dant, and other chemical content. This has potential implications for 
human health, which could be positive or negative, as for example 
on the diversity of the human intestinal microbiome (e.g., Albenberg 
& Wu, 2014).

As global biodiversity is rapidly declining, limiting our possibili-
ties of finding new food sources (Díaz et al., 2020), and considering 
that most analyses lack information on the entire spectrum of food 
resources consumed across the world, an assessment of their current 
distribution and conservation status to inform science-based policy 
making has become urgent. In addition, the adverse impacts of cli-
mate change on biodiversity, agricultural production, and food se-
curity have made the conservation of food diversity and associated 
traditional knowledge a global priority (Corlett, 2016; Maxted, Ford-
Lloyd, Jury, Kell, & Scholten, 2006; Vincent et al., 2013). Finally, as 
intact habitats come under pressure from the increased demand for 
cropland worldwide (Tilman et al., 2017), ex situ plant conservation 
measures need accelerating (Larkin, Jacobi, Hipp, & Kramer, 2016), 
as promoted in the UN Sustainable Development Goal (SDG) Target 
2.5 (https://susta inabl edeve lopme nt.un.org/).

In this article, we (a) consider the global state of edible plants, 
their taxonomic diversity, uses, distribution, and conservation sta-
tus; and (b) explore untapped plant and fungi resources, by review-
ing the role of multipurpose NUS that could be adopted as potential 
future food crops under a changing climate.

2  | THE GLOBAL STATE OF EDIBLE 
PL ANTS AND MA JOR FOOD CROPS

To assess the global diversity of edible plants we used the “World 
Checklist of Useful Plant Species” data set, produced by the Royal 
Botanic Gardens, Kew (Diazgranados et al., 2020). This data set in-
cludes 40,292 species with at least a documented human use and 
was redacted by compiling plant uses and reconciling species names 
using the taxonomic backbone of Kew's Plants of the World Online 
portal (http://www.plant softh eworl donli ne.org/) from 13 large 
datasets, listed in Diazgranados et al. (2020). Species with “human 
food” use in this list were extracted and analyzed in this review as 
“edible plants.” Crop wild relatives, although included in the list and 

analyzed in this review, were not treated separately, as several stud-
ies are already available on their richness, global distribution, and 
conservation, for example in Castañeda-Álvarez et al. (2016) and 
Milla (2020). Species from Diazgranados et al. (2020) that were also 
listed in Annex 5 of FAO (2015) were identified as “major food crops” 
in this review. Plant uses were classified according to the Level 1 of 
Uses of the Economic Botany Data Collection Standard (Cook, 1995), 
simplified to 10 categories, as in Diazgranados et al. (2020).

2.1 | Taxonomic diversity

Depending on authority, the total number of edible plants in the 
world varies from 100s (Van Wyk, 2019) to >30,000 plants, includ-
ing infraspecific taxa (French, 2019). These differences in numbers 
are based on multiple factors, such as taxonomic rank (e.g., counting 
infraspecific taxa), accuracy (e.g., using reconciled taxonomy), and 
precision (e.g., using a unique taxonomic backbone), as well as the 
types of consumers and their diets. For example, using a conserva-
tive approach based on reported uses, RBG Kew has recorded to 
date 7,039 edible species, in a broad taxonomic sense, from 288 fam-
ilies and 2,319 genera, including 7,030 edible species of Bryophyta, 
Chlorophyta, Rhodophyta, and Tracheophyta (Diazgranados 
et al., 2020). Many more edible species are expected to be identified 
in the future, as under-documented regions, for example, tropical 
America and New Guinea, are better characterized (Cámara-Leret 
& Dennehy, 2019; Cámara-Leret, Paniagua-Zambrana, Balslev, & 
Macía, 2014). Recognizing variation within species (subspecies, lan-
draces, etc.) is equally important. While Brassica oleracea is known to 
cover nine crops, the level of plant diversity in use can be obscured 
by the widespread use of a common name (e.g., “beans” apply to at 
least 17 genera, 30 species, and thousands of varieties).

Vascular plants (Tracheophyta) are the most important for 
human food, encompassing 272 families, 2,300 genera, and 7,014 
known species, that is, 2.0% of the total angiosperm species diver-
sity (347,298 accepted species; WCVP, 2020). Sixty percent of the 
vascular plant families include edible species, covering almost all the 
major phylogenetic clades (Figure 1). The most diverse orders are 
Fabales (640 edible species), Malpighiales (550), Sapindales (465), 
Gentianales (444), and Rosales (395). The richest families (see Figure 
S1) are Fabaceae (i.e., beans, 625 edible species), Arecaceae (palms, 
325), Poaceae (grasses and includes cereals, 314), Malvaceae (mal-
low family, includes cacao, okra and durian, 257), and Asteraceae 
(sunflower and lettuce families, 251). With at least 100 edible spe-
cies, Ficus (figs) is the richest genus, followed by Diospyros (52), 
Solanum (51), Garcinia (48), and Grewia (46). Most of the edible plants 
(97%) correspond to flowering plants, with 245 families, 2,235 gen-
era, and 6,828 species. However, there is substantial variation in the 
proportion of edible plants among non-flowering plant groups, for 
example, 0.5% (six species) of Lycopodiopsida, 1.0% (109 species) 
of Polypodiopsida, 3.9% (13 species) of cycads, 7.5% (47 species) of 
Pinopsida, 8.9% (10 species) of Gnetopsida, and 100% (one species) 
of ginkgo.

https://sustainabledevelopment.un.org/)https://sustainabledevelopment.un.org
http://www.plantsoftheworldonline.org/
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To understand the taxonomic distribution of intensively used 
food plants, we mapped the major food crop species listed by the 
FAO (2015) onto the phylogeny (Figure 1). Only 417 (5.9%) of edi-
ble plant species from Diazgranados et al. (2020), belonging to 168 
(7.2%) genera and 62 (21.5%) families, appear in the FAO (2015) list. 
The richest families in major crops are Rosaceae (e.g., apples; 51 spe-
cies/eight genera), Fabaceae (51 species/19 genera), Dioscoreaceae 
(i.e., yams; 41 species/one genus), Poaceae (27 species/16 genera), 
and Malvaceae (21 species/eight genera). Interestingly, several edible 
species-rich families have very few major crops, or none. For exam-
ple, Arecaceae (325 species) has only six crop species, Apocynaceae 
(228 spp.) just one, and Phyllanthaceae (101 species) none. The rea-
sons for the low (or absent) domestication rate detected in some 
families may include: habit (e.g., tall trees/palms from the tropics; 
parasitic families such as Balanophoraceae or Loranthaceae); high 
toxicity (e.g., many Apocynaceae bear edible fruits, but all other 
parts are poisonous); habitat specificity (e.g., plants adapted to 
harsh weather, making difficult to establish crops); low growth rate 
(e.g., many woody plants); spatial distribution (e.g., plants from areas 

where practices of domestication of those species are not known); 
or simply because it was not needed (e.g., high abundance of man-
grove trees in the Rhizophoraceae, which provide food among other 
uses, may be sufficient for the local demand). Some families, such 
as Acanthaceae and Phyllanthaceae, have a few species under cul-
tivation but these are not used as food (e.g., as ornamental plants). 
Lastly, 77 plant families have one or two edible species which are 
not crops.

2.2 | Plant uses

Edible plants often have additional uses, which may differ in the 
world as part of the existing cultural diversity. The most frequent 
use is medicines (70% of species), followed by materials (59%), en-
vironmental uses (40%), gene sources (i.e., wild relatives of major 
crops which may possess traits associated to biotic or abiotic resist-
ance and therefore be valuable for breeding programs; Cook, 1995; 
32%), and animal food (30%; Figure 2a). The same general trend 

F I G U R E  1   Phylogenetic distribution of edible plants from Diazgranados et al. (2020), and major food crops also listed in FAO (2015). A 
phylogeny of 448 vascular plant families was derived from the Spermatophyta supertree inferred from sequence data of 79,881 species by 
Smith and Brown (2018) by keeping one representative species per plant family. Presence/absence of edible plants and major food crops 
per family was drawn at the tips of the phylogeny using the R-package GGTREE (Yu, Smith, Zhu, Guan, & Lam, 2017). The rectangles at the 
tips of the phylogeny denote the presence of human food plants (orange) and major food crops (brown) in each family. Major plant clades are 
color-coded, except for clades with just a few families, indicated with numbers: 1. Chloranthales (1 family); 2. Ceratophyllales (1); 3. Proteales 
(4), Trochodendrales (1), Buxales (1) and Gunnerales (2); 4. Dilleniales (1 fam.); and 5. Berberidopsidales (2). Please see Figure S1 in the 
Supporting Information for the detailed tree with the names in the tips for all families
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was identified for species of major crops, with 83% also reported 
as “medicinal,” and with “gene source” having higher weight (70%) 
than in the full list of edible plants (Figure 2b). The link between 
food and medicine is well documented (e.g., Iwu, 2016), and al-
ready demonstrated for plant-rich diets, such as the traditional 
Mediterranean diet (Willett et al., 1995). Livestock and wild animals 
can also make use of the medicinal properties of plants to improve 
or maintain their health, for example, to control internal parasites 
(Villalba & Provenza, 2007; Villalba, Provenza, K Clemensen, Larsen, 
& Juhnke, 2011). Indeed, the boundaries between foods, including 
functional foods, medicine, and nutraceuticals are often blurred, at-
tributed to certain phytochemicals in edible plants that have mecha-
nistic effects relevant to human health, independent of fundamental 
nutrition (Howes, 2018b; Howes et al., 2020; Paradee et al., 2019). 
Certain edible plants and their constituents are associated with a 
reduced risk of some diseases. For example, there has been interest 
in the role of cruciferous vegetables and turmeric (Curcuma longa) to 
reduce cancer risk (Howes, 2018a), while Perilla frutescens nutlets 
have been evaluated to provide protection against oxidative stress in 
some hepatic disorders (Paradee et al., 2019). This concept extends 
to livestock and there is emerging evidence that the phytochemi-
cal composition of animal feed can enhance meat and dairy prod-
ucts, which may reduce the incidence of some diseases in humans 
(Provenza, Kronberg, & Gregorini, 2019).

2.3 | Global distribution

We found the native distribution of the large array of edible plant 
species documented in Diazgranados et al. (2020) to exhibit a clear 
latitudinal gradient, with food plant species richness decreasing from 
low to high latitudes (Figure 3a), similarly to general patterns in total 

plant diversity (Kier et al., 2009). Although a major hotspot of plant 
species richness, tropical Americas is under-represented in terms 
of edible plants. This highlights a likely spatial bias in Diazgranados 
et al. (2020) toward other tropical, and better investigated, areas of 
the world, for which information is databased and accessible, such as 
Africa, which is well represented in the Plant Resources for Tropical 
Africa (PROTA) database (https://www.prota 4u.org/database).

The native distribution of some of the major food crop plant 
species from FAO (2015; Figure 3b) generally maps over Vavilov's 
centers of diversity (Vavilov, Vavylov, Vavílov, & Dorofeev, 1992), 
that is, the Mediterranean, Middle East, and Central Asia (for wheat, 
lentils, peas, artichokes, apples), Ethiopia/Eritrea highlands (for teff, 
Arabica coffee, enset), India (for aubergines, pigeon pea, mangoes), 
East Asia (for soybean, Asian rice, oranges, peaches), Mesoamerica, 
and the Andes (for maize, chillies, common bean, tomatoes, pota-
toes). However, there is a relatively low species richness in major 
food crops from the Malay Archipelago and high edible species rich-
ness from parts of Sub-Saharan Africa. Additional centers of origin 
have been proposed in recent years based on new archaeological ev-
idence, such as West Africa for pearl millet and cowpea and Eastern 
Sahel for sorghum (Fuller et al., 2014; Harlan, 1971; Purugganan & 
Fuller, 2009).

There is a geographical spectrum to food plant domestication, 
with total food plant richness mostly in the tropics and major do-
mestication events more scattered at mid-latitudes, following a 
global pattern associated with environmental and historical fac-
tors (Diamond, 2002). The proportion of highly domesticated spe-
cies increases from species-rich, forested, warm, and wet areas 
to drier climates, rugged terrains (i.e., mountainous areas exhib-
iting high heterogeneity in environmental conditions), and large 
human settlements developing agriculture (Lev-Yadun, Gopher, & 
Abbo, 2000; Meyer et al., 2012; Vavilov et al., 1992). In contrast, 

F I G U R E  2   Heat map showing the 
proportion of plant species in each 
additional use category for (a) edible plant 
species from Diazgranados et al. (2020) 
and (b) species of major food crops also 
listed in FAO (2015). The dendrogram 
represents a hierarchical clustering of 
the uses: clustered uses indicate closer 
proportion pattern, using the Euclidian 
distance for building the distance matrix 
and the “Complete-linkage” method 
for the hierarchical aggregation of the 
dendrogram

https://www.prota4u.org/database
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wild, species-poor, cold, and flat areas of high latitudes contain few 
highly domesticated plants. However, humans are now changing 
these spatial patterns in food supply, demand, and cultivation by ho-
mogenizing the distribution of both agro-biodiversity and biodiver-
sity in general (Baiser, Olden, Record, Lockwood, & McKinney, 2012; 
Khoury et al., 2014).

Understanding better the global distribution of edible plants of-
fers an opportunity to identify future crops that are better adapted 
to present and future climatic conditions, and whose plant material 
is locally accessible. This could improve food security by increas-
ing the cultivation of “climate smart” crops with fit-for-purpose 
seed lots (Castillo-Lorenzo, Pritchard, Finch-Savage, & Seal, 2019) 
that will produce food despite changing growing conditions (Borrell 
et al., 2020; Díaz et al., 2019; Pironon et al., 2019).

2.4 | Conservation status and measures in place

Previous studies on the comprehensiveness of the conservation of 
useful plants have highlighted that they are currently highly under-
conserved, both ex situ and in situ (Castañeda-Álvarez et al., 2016; 
Fielder et al., 2015; Khoury et al., 2019). However, when the 

collections housed in botanic gardens are included, we find a sub-
stantial representation of edible plant species conserved ex situ 
worldwide (Table 1). These results were achieved thanks to the 
joint efforts of the international CGIAR genebanks (https://www.
cgiar.org/), botanic gardens (https://www.bgci.org/), and interna-
tional plant conservation networks, such as Kew's Millennium Seed 
Bank Partnership (Liu, Breman, Cossu, & Kenney, 2018). However, 
some food species might be missing from ex situ collections due 
to incomplete data sets, geographic rarity, and having recalcitrant 
(i.e., desiccation sensitive) seeds, such as some tropical fruit trees 
(Li & Pritchard, 2009) and some priority crops on Annex 1 of the 
“International Treaty on Plant Genetic Resources for Food and 
Agriculture” (FAO, 2009). More work is also needed to understand 
and evaluate the functional and genetic diversity of ex situ collec-
tions, their potential for reintroduction efforts (Hay & Probert, 2013) 
and adaptability to future climate change (Borrell et al., 2020; 
Fernández-Pascual, Mattana, & Pritchard, 2019).

The International Union for Conservation of Nature (IUCN) Red 
List (IUCN, 2020) includes species-level global conservation assess-
ments for at least 2,108 (30%) edible species listed in Diazgranados 
et al. (2020) and 1,811 of these (86%) are conserved ex situ (Table 2). 
Although most species (78%) are identified as Least Concern, at least 

F I G U R E  3   (a) Global species richness 
per country of 6,959 out of the 7,039 
edible species from Diazgranados 
et al. (2020). (b) Global species richness 
per country of 171 out of the 417 major 
food crops also listed in FAO (2015). 
While edible species richness decreases 
with increasing latitude, high richness 
in major food crops is mainly found in 
centers of domestication at mid-latitudes. 
Maps include species for which an IPNI 
ID (https://www.ipni.org/), as well as 
countries and sub-countries distribution 
data from the World Checklist of Selected 
Plant Families (WCVP, 2020), were 
available

https://www.cgiar.org/
https://www.cgiar.org/
https://www.bgci.org/
https://www.ipni.org/
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234 species (11%) are considered at risk of extinction (i.e., extinct 
in the wild; critically endangered; endangered; or vulnerable). The 
Botanic Gardens Conservation International (BGCI) ThreatSearch 
database (https://tools.bgci.org/threat_search.php) lists conserva-
tion assessments at global, regional, and national level for at least 
3,893 (55%) of the species in our list, with most species (76%) iden-
tified as “Not Threatened” (Figure 4). Many major food crop species 
are widespread; therefore, it is likely that their extinction risk will 
be relatively low. Nonetheless, specific plant populations, including 

landraces, which may have unique climatic and environmental toler-
ances, and upon which human communities may depend, might still 
be threatened. Therefore, future conservation priorities should re-
flect assessments at the global level, and, for narrow distributed spe-
cies, at the national level (Forest et al., 2018; Liu, Kenney, Breman, 
& Cossu, 2019).

3  | UNTAPPED PL ANT FOOD RESOURCES

Beyond habitat destruction, many NUS are at risk of disappearing be-
cause of changing cultural views and lack of documentation (National 
Research Council, 2008). Promoting their role in food security calls for 
coordinated approaches across plant science and food systems, from 
local to international levels (Baldermann et al., 2016), as actively pro-
moted since 1988 by the International Centre for Underutilized Crops 
(Tchoundjeu & Atangana, 2006). However, consolidated attention to 
NUS has really only emerged in the last decade, as the fight against 
climate change and the need to make agricultural production systems 
more diverse and environment resilient has accelerated (see Table S1 
for a selection of projects/initiatives). The same trend is also evident 
for the limited pool of human and animal food crops, for which the chal-
lenges of feeding a growing population with a limited pool of crops have 
been highlighted (Lee, 2018; Lee, Davis, Chagunda, & Manning, 2017).

There are many incentives and subsidies that tie countries into 
the production of major crops (Hunter et al., 2019; Noorani, Bazile, 
Diulgheroff, Kahane, & Nono-Womdim, 2015) and which potentially 
hinder conservation efforts (Kahane et al., 2013). Addressing NUS 
conservation and their sustainable production is critically import-
ant if they are to compete in the marketplaces dominated by a few 
commodity crops. An integrated conservation approach combines ex 
situ, in situ and on farm methods and ensures the effective mainte-
nance and use of genetic diversity, the knowledge associated with 
this diversity and its transmission to future generations (Padulosi, 
Bergamini, & Lawrence, 2012). The primary challenge is the priori-
tization of model species for impact, to make the best use of limited 
resources. Species selection should be driven by shared priorities in 
terms of nutrition, climate adaptation, income generation, cultural 

Taxonomy
Total number in the 
reference list

Total number conserved ex situ

Seedsa  Unspecified Plantsb  Overall

Class 8 8 8 6 8 (100%)

Order 69 62 68 43 69 (100%)

Families 272 231 254 127 263 (97%)

Genera 2,300 1,573 1,834 556 2,016 (88%)

Species 7,014 3,810 4,789 1,100 5,454 (78%)

aAs populations/seed lots; 
bCould be limited to a few individuals. 

Sources: RBG Kew's MSB Partnership (https://www.kew.org/scien ce/our-scien ce/proje cts/banki 
ng-the-world s-seeds), Genesys (https://www.genes ys-pgr.org/) and Botanic Gardens Conservation 
International (https://tools.bgci.org/plant_search.php)

TA B L E  1   Taxonomic representation of 
food plant species in ex situ conservation 
facilities worldwide as seeds or/and as 
living plants

TA B L E  2   Current conservation status and ex situ conservation 
measures for food plant species

IUCN category

Total number of species

The IUCN 
Red List 
(IUCN, 2020)

Conserved 
ex situ (N)

Conserved 
ex situ (%)

Extinct in the Wild 
(EW)

1 1 100

Critically 
Endangered (CR)

23 17 74

Endangered (EN) 68 53 78

Vulnerable (VU) 142 94 66

Near Threatened 
(NT)

64 53 83

Lower Risk/
conservation 
dependent (LR/cd)

5 5 100

Lower Risk/near 
threatened (LR/nt)

35 24 69

Lower Risk/least 
concern (LR/lc)

52 42 81

Least Concern (LC) 1,656 1,468 89

Data Deficient (DD) 62 54 87

Total 2,108 1,811 86
Sources: RBG Kew's MSB Partnership (https://www.kew.org/
scien ce/our-scien ce/proje cts/banki ng-the-world s-seeds), Genesys 
(https://www.genes ys-pgr.org/), and Botanic Gardens Conservation 
International (https://tools.bgci.org/plant_search.php)

https://tools.bgci.org/threat_search.php
https://www.kew.org/science/our-science/projects/banking-the-worlds-seeds
https://www.kew.org/science/our-science/projects/banking-the-worlds-seeds
https://www.genesys-pgr.org/
https://tools.bgci.org/plant_search.php
https://www.kew.org/science/our-science/projects/banking-the-worlds-seeds
https://www.kew.org/science/our-science/projects/banking-the-worlds-seeds
https://www.genesys-pgr.org/
https://tools.bgci.org/plant_search.php
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diversity, ecosystem health, and the urgency of the intervention due 
to ongoing genetic erosion. Women, young people, and indigenous 
groups must be active participants in all of these exercises, through 
a participatory bottom-up process (Padulosi, Phrang, Phrang, & 
Rosado-May, 2019), as carried out by Dansi et al. (2012) in Benin and, 
more recently, by FAO within its Future Smart Food Initiative in Asia 
(FAO, 2018). This bottom-up approach will help develop innovative 
methods and tools of wide applicability that could be applied to other 
NUS. Success and failures in promoting “new” crops can be found 
across many regions, for example the effective establishment of lupin 
cultivation in Australia (Nelson & Hawthorne, 2000), or the negative 
social and environmental impact in the Andes caused by the quinoa 
boom (McDonell, 2018). To strengthen the self-sufficiency of food 
and production systems in terms of climate resilience, agroecological 
benefits (e.g., soil improvers and species' enhancers), food and nutri-
tion security (e.g., species and varieties that build resilient, more nutri-
tious and healthy diets), and income generation (e.g., diversity to build 
economic resilience), there is a need for both sustainable promotion 
and integrated conservation. Sustainable promotion makes diversity 
a central feature of the food system (at both intra- and inter-specific 
levels), thereby potentially avoiding what has happened in the Andes 
with quinoa, where global demand is being met by a few mainstream 
varieties, while hundreds of others are being marginalized (Zimmerer 
& Carney, 2019). Low levels of funding for the promotion of NUS, 
like yams, amaranth, Bambara groundnut, or African leafy vegetables, 
represents a major challenge for most countries interested in their 
promotion. Economic incentives and subsidies to private companies 
for producing local crops or certification schemes to recognize bio-
diversity-rich products, should be actively pursued and include the 
establishment of an international “NUS Fund” specifically dedicated 
to supporting their development (Padulosi, Cawthorn, et al., 2019).

It is with this vision in mind that we provide a selection of highly 
promising NUS of plants (wild, domesticated, or semi-domesticated) 
from different regions of the world (Table 3), which have been targeted 

by major projects, international agencies (Table S1) and researchers 
(references in Table 3). We highlighted (in bold text in Table 3) those 
which are not currently listed as major food crops by the FAO (2015), 
for example, the mesquites in the Americas, morama bean in Africa, 
Akkoub in Asia, rocket in Europe and Pindan walnut in Oceania (Table 3). 
In addition, considering the differences in nutritional properties of the 
organ types (Guil-Guerrero & Torija-Isasa, 2002), we also reported the 
edible parts of each species. When comparing the taxa listed in Table 3 
with those reported by Diazgranados et al. (2020), we found an aver-
age of five uses recorded per taxa, and a peak of 24 taxa with seven 
uses (Figure S2). Examples of NUS with many uses include the baobab 
in Africa, which is known as the “tree of life,” whose leaves, flowers, fruit 
pulp, and seeds are used as food and to make beverages; the bark, roots, 
and seeds are medicinal; the bark is used for making rope, roofing ma-
terial and clothing; and the hard husk of the fruit is used as calabash 
(Chadare, Linnemann, Hounhouigan, Nout, & Van Boekel, 2008; National 
Research Council, 2008; Ngwako, Mogotsi, Sacande, Ulian, Davis, et al., 
2019). The taro, originally from Asia and also cultivated in Oceania, has 
edible leaves, flowers, and roots; the roots are also medicinal and used as 
an additive to render plastics biodegradable (Arora, 2014; Linden, 1996).

Therefore, NUS of plants, as well as many edible species of fungi 
(see Box 1), represent potentially low-hanging fruit for a more resil-
ient, sustainable, biodiverse, and community participation-driven new 
“green revolution,” equitable and fair to the environment and all mem-
bers of society.

4  | QUALIT Y OF FOOD RESOURCES IN A 
CHANGING CLIMATE

In the coming century, major challenges to agriculture and biodi-
versity will be dominated by increased climate variation. Hence, re-
search needs to increase our knowledge on the biology and ecology 
of many NUS to be able to synthesize the future impact of climate 

F I G U R E  4   Conservation status 
for 3,893 edible plant species from 
Diazgranados et al. (2020), according 
to the BGCI ThreatSearch database 
(https://tools.bgci.org/threat_search.
php). One assessment per species was 
selected, giving priority to the most 
recent assessment with highest risk. 
Records without an assessment year were 
excluded

https://tools.bgci.org/threat_search.php
https://tools.bgci.org/threat_search.php
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TA B L E  3   Selection of neglected and underutilized plants (NUS) that have been recommended in scientific papers or targeted by 
collaborative projects, networks or international agencies. Species in bold are not listed in FAO (2015). Scientific names are ordered 
alphabetically and according to Kew's Plants of the World Online portal (http://www.plant softh eworl donli ne.org).

Common 
name(s) Scientific name Source

Plant 
part(s) 
used

Region(s) of 
origin

Main regions 
of natural 
occurrence or 
cultivation Key reference(s)

Target of projects, 
included in 
priority lists or 
focus of efforts by 
key international 
agencies (Table S1) Number of uses

1. Slippery 
cabbage, 
bele, abika

Abelmoschus 
manihot (L.) 
Medik.

2 1 Asia, Oceania Oceania, Asia Solberg, Seta-
Waken, Paul, 
Palaniappan, and 
Iramu (2018)

7

2. Baobab Adansonia 
digitata L.

1 1,2,3,4 Africa Africa Hall, Rudebjer, 
and Padulosi 
(2013), Kahane 
et al. (2013), 
National Research 
Council (2008), 
Ngwako, Mogotsi, 
Sacande, Ulian, 
Davis, et al. (2019)

3; 9; 12 10

3. Ground 
elder

Aegopodium 
podagraria L.

1 1 Europe Europe Łuczaj et al. (2012) 0

4. Candlenut Aleurites 
moluccanus (L.) 
Willd

1 5 Asia, Oceania Asia, Oceania 12 10

5. Amaranth Amaranthus 
L. (incl.: A. 
caudatus L., 
A. hybridus 
subsp. quitensis 
(Kunth) Costea 
& Carretero, A. 
spinosus L., A. 
retroflexus L.)

3 1,4 Americas, 
Asia, Africa, 
Europe

Americas, 
Asia, Africa, 
Europe

Arora (2014), Hall 
et al. (2013), 
Hernandez-
Bermejo and León 
(1992), Kahane 
et al. (2013), 
Kasolo, 
Chemining'wa, 
G., and Temu, A. 
(2018), Li et al. 
(2018), National 
Research Council 
(1996), Tyagi 
et al. (2017)

3; 4; 5; 8; 9;10; 
11; 12

A. caudatus = 7;  
A. hybridus = 7; 
A. spinosum = 7; 
A. retroflexus = 4

6. Elephant 
foot yam

Amorphophallus 
paeoniifolius 
(Dennst.) 
Nicolson

2 5 Asia Asia Arora (2014), Raneri 
et al. (2019), Tyagi 
et al. (2017)

2 6

7. Sugar 
apple

Annona spp. 
(incl.: A. 
squamosa L., A. 
cherimola Mill., 
A. crassiflora 
Mart., A. 
muricata L.).

2 3 Americas, 
Asia

Americas, 
Asia, Oceania

Hall et al. (2013), 
Kasolo et al. (2018), 
Kour et al. (2018), 
Hernandez-
Bermejo and León 
(1992), Padulosi 
et al. (2011), Tyagi 
et al. (2017)

3; 12 4 (15 species)

8. Araucarias Araucaria 
Juss. [incl.: A. 
angustifolia 
(Bertol.) Kuntze, 
A. araucana 
(Molina) 
K.Koch, A. 
bidwillii Hook.].

1 4 Americas, 
Oceania

Americas, 
Oceania

12 4 (6 species)

(Continues)

http://www.plantsoftheworldonline.org
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Common 
name(s) Scientific name Source

Plant 
part(s) 
used

Region(s) of 
origin

Main regions 
of natural 
occurrence or 
cultivation Key reference(s)

Target of projects, 
included in 
priority lists or 
focus of efforts by 
key international 
agencies (Table S1) Number of uses

9. Estragon Artemisia 
dracunculus L.

2 1 Europe, Asia Europe, Asia 2 3

10. 
Breadfruit

Artocarpus altilis 
(Parkinson) 
Fosberg

2 3 Asia, Oceania Asia, Oceania Thomson, Doran, 
and Clarke (2018), 
Tyagi et al. (2017)

3; 9;11; 12 10

11. Jackfruit Artocarpus 
heterophyllus 
Lam.

2 3 Asia Asia Arora (2014), Kour 
et al. (2018), Li 
et al. (2018), Tyagi 
et al. (2017)

3; 9; 11 7

12. 
Asparagus

Asparagus Tourn. 
ex L.

1 6 Europe Europe Arora (2014), Łuczaj 
et al. (2012), Tyagi 
et al. (2017)

4 (19 species)

13. Peach 
palm

Bactris gasipaes 
Kunth

3 3 Americas Americas Hernandez-
Bermejo and León 
(1992), Kahane 
et al. (2013), 
Raneri et al. (2019), 
Wickens, Haq, and 
Day (1989)

2; 3; 12 7

14. Common 
bamboo

Bambusa vulgaris 
Schrad. ex 
J.C.Wendl.

3 6 Asia Africa, Asia, 
Oceania, 
Americas

14; 15 9

15. Ackee Blighia sapida 
K.D.Koenig

3 3 Africa Africa, 
Americas

Dansi et al. (2012), 
Hall et al. (2013)

3 7

16. Kale Brassica oleracea 
L.

3 1 Asia Europe, 
Americas

8 7

17. Pigeon 
pea

Cajanus cajan (L.) 
Huth

2 4 Asia Africa, Asia, 
Americas

FAO (2010) 3; 10; 12 9

18. Carissa Carissa spinarum 
L.

1 1,3 Africa Africa Kour et al. (2018), 
National 
Research Council 
(2006), Omondi 
et al. (2019)

3 9

19. Lagos 
spinach

Celosia argentea 
L.

1 1 Africa Africa, Asia Hall et al. (2013), 
National Research 
Council (2006)

3; 10; 11 8

20. Bulbous 
chervil

Chaerophyllum 
bulbosum L.

1 1 Europe Europe Łuczaj et al. (2012) 2

21. Quinoa, 
Goosefoots, 
Cañahua

Chenopodium 
L. [incl.: 
Chenopodium 
quinoa Willd., 
C. pallidicaule 
Aellen, C. 
giganteum 
D.Don, Blitum 
bonus-henricus 
(L.) Rchb.]

1 4 Americas Asia, 
Americas, 
Africa, 
Europe

Kasolo et al. (2018), 
Arora (2014), 
Li et al. (2018), 
Li et al. (2018), 
Łuczaj et al. (2012), 
Padulosi 
et al. (2011), Raneri 
et al. (2019)

3; 4; 8; 9 4 (5 species)

22. Chicory Cichorium intybus 
L.

1 1 Europe Europe Łuczaj et al. (2012), 
National Research 
Council (1996)

12 6

TA B L E  3   (Continued)
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Common 
name(s) Scientific name Source

Plant 
part(s) 
used

Region(s) of 
origin

Main regions 
of natural 
occurrence or 
cultivation Key reference(s)

Target of projects, 
included in 
priority lists or 
focus of efforts by 
key international 
agencies (Table S1) Number of uses

23. Spider 
plant

Cleome gynandra 
L.

3 1 Africa Africa, Asia, 
Americas

Dansi et al. (2012), 
Hall et al. (2013), 
Kahane et al. (2013), 
Raneri et al. (2019)

2; 3; 9; 11; 12 7

24. Chaya Cnidoscolus 
aconitifolius 
(Mill.) 
I.M.Johnst.

2 1 Americas Americas Raneri et al. (2019) 4; 9; 10 6

25. Jobs’ 
tears

Coix lacryma-
jobi L.

3 4 Asia Cosmopolitan Hall et al. (2013), 
Li et al. (2018), 
Sanogo et al. (2019)

12 8

26. Taro Colocasia 
esculenta (L.) 
Schott

1 1,2,5,6 Asia Asia, Oceania Arora (2014), Hall 
et al. (2013), 
Kahane et al. (2013)

3; 11 8

27. Jute 
mallow

Corchorus 
olitorius L.

2 1,3 Asia, Africa Africa, Asia, 
Americas

Dansi et al. 
(2012), Padulosi 
et al. (2011), Raneri 
et al. (2019)

4; 11 7

28. 
Rattlepods

Crotalaria L. 3 1 Africa Cosmopolitan 3; 11; 12 4 (23 species)

29. Japanese 
pie pumpkin

Cucurbita 
argyrosperma 
C.Huber

2 3 Americas Americas Hernandez-Bermejo 
and León (1992)

3

30. Squash Cucurbita 
moschata 
Duchesne

2 3 Americas Americas Hernandez-Bermejo 
and León (1992)

5

31. Swamp 
taro

Cyrtosperma 
merkusii (Hassk.) 
Schott

2 5 Asia Oceania, Asia Arora (2014), 
Kahane 
et al. (2013), Li 
et al. (2018), Tyagi 
et al. (2017)

3; 8; 9 3

32. Fonio Digitaria exilis 
(Kippist) Stapf 
and D. iburua 
Stapf

2 4 Africa Africa FAO (2010), Kahane 
et al. (2013), 
National Research 
Council (1996); 
Raneri et al. (2019)

3; 4; 8; 9; 11; 12 D. exilis = 8
D. iburua = 3

33. Yams Dioscorea 
cayenensis 
subsp. rotundata 
(Poir.) J.Miège, 
D. polystachya 
Turcz., D. 
dumetorum 
(Kunth) Pax, D. 
bulbifera L.

3 5 Africa Africa, Asia, 
Americas, 
Oceania

Arora (2014), Hall 
et al. (2013)

3; 8; 11; 12 D. 
cayenensis = 05, 
D. polystachya: 
3, D. 
dumetorum = 6, 
D. bulbifera = 7

34. Barnyard 
grass

Echinochloa 
P.Beauv.

1 4 Africa, Asia, 
Americas

Africa, Asia, 
Americas

Arora (2014), Li 
et al. (2018), Raneri 
et al. (2019), Tyagi 
et al. (2017)

3 5 (10 species)

TA B L E  3   (Continued)

(Continues)
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Common 
name(s) Scientific name Source

Plant 
part(s) 
used

Region(s) of 
origin

Main regions 
of natural 
occurrence or 
cultivation Key reference(s)

Target of projects, 
included in 
priority lists or 
focus of efforts by 
key international 
agencies (Table S1) Number of uses

35. Finger 
millet

Eleusine coracana 
(L.) Gaertn.

2 4 Asia Asia, Africa Arora (2014), 
FAO (2010), Hall 
et al. (2013), Li 
et al. (2018), 
National Research 
Council (1996), 
Raneri et al. (2019), 
Tyagi et al. (2017)

3; 4; 7; 8; 9; 11; 12 7

36. Teff Eragrostis tef 
(Zuccagni) 
Trotter

2 4 Africa Africa Arora (2014), FAO 
(2010), National 
Research Council 
(1996), Wickens 
et al. (1989)

2; 3; 8; 9; 11; 12 7

37. Rocket Eruca vesicaria 
(L.) Cav.

2 1 Europe, Asia Europe, Asia, 
Americas

Arora (2014), Raneri 
et al. (2019)

1; 3; 9; 7

38. Torch lily Etlingera spp. 
[incl.: E. elatior 
(Jack) R.M.Sm., 
E. hemisphaerica 
(Blume) 
R.M.Sm.].

3 1,2,3,4 Asia Asia, Africa, 
Americas, 
Oceania

12 2 (13 species)

39. 
Buckwheat

Fagopyrum 
esculentum 
Moench

2 4 Asia Asia, Europe Arora (2014), Hall 
et al. (2013), Kasolo 
et al. (2018), Li 
et al. (2018), Raneri 
et al. (2019), Tyagi 
et al. (2017)

3; 7; 8; 9; 12 9

40. Sycamore 
fig

Ficus sycomorus 
L.

1 1 Africa, Asia Africa, Asia, 
Americas

Tyagi et al. (2017) 3; 12 8

41. Kokum Garcinia L. 
[incl.: G. indica 
(Thouars) 
Choisy, G. 
parvifolia 
(Miq.) Miq., G. 
gummi-gutta (L.) 
Roxb., G. morella 
(Gaertn.) Desr., 
G. binucao 
(Blanco) Choisy]

1 3 Asia Asia Arora (2014), Kour 
et al. (2018), Li 
et al. (2018), Tyagi 
et al. (2017)

3; 6; 12 3 (548 species)

42. Ginkgo Ginkgo biloba L. 1 4 Asia Asia Arora (2014) 4

43. 
Arrowroot

Goeppertia allouia 
(Aubl.) Borchs. 
& S.Suárez

2 5 Americas Americas Hernandez-Bermejo 
and León (1992)

3; 12 2

44. Akkoub Gundelia 
tournefortii L.

1 6 Asia Asia 3; 12 3

45. Roselle Hibiscus 
sabdariffa L.

2 1,2 Africa Africa, Asia, 
Oceania

Arora (2014), Kasolo 
et al. (2018), Li 
et al. (2018), Tyagi 
et al. (2017)

3; 12 8

TA B L E  3   (Continued)
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Common 
name(s) Scientific name Source

Plant 
part(s) 
used

Region(s) of 
origin

Main regions 
of natural 
occurrence or 
cultivation Key reference(s)

Target of projects, 
included in 
priority lists or 
focus of efforts by 
key international 
agencies (Table S1) Number of uses

46. Sea 
buckthorn

Hippophae 
rhamnoides L.

2 3 Asia Asia, Europe Arora (2014), Łuczaj 
et al. (2012), 
Padulosi 
et al. (2011)

0

47. Hop Humulus lupulus 
L.

1 1 Europe Europe Łuczaj et al. (2012) 12 5

48. Lablab Lablab purpureus 
(L.) Sweet

2 4 Africa Africa, Asia Arora (2014), 
Kahane 
et al. (2013), 
National Research 
Council (1996), 
Tyagi et al. (2017)

3; 9; 11;12 7

49. Lupin Lupinus mutabilis 
Sweet and L. 
albus L.

2 4 Americas, 
Africa, 
Europe,

Americas, 
Africa, 
Europe

Hernandez-Bermejo 
and León (1992)

3; 4; 12 L. mutabilis = 7
L. albus = 8

50. 
Macadamia

Macadamia 
tetraphylla 
L.A.S.Johnson

2 3 Oceania Africa, Asia, 
Oceania

Arora (2014), Kasolo 
et al. (2018), Tyagi 
et al. (2017)

2

51. Mallow Malva Tourn. 
ex L.

1 1 Europe, Asia Europe, Asia Arora (2014), Łuczaj 
et al. (2012)

3 4 (4 species)

52. 
Microseris 
(several 
common 
names)

Microseris 
D.Don. [incl.: 
M. scapigera 
Sch.Bip., M. 
lanceolata 
(Walp.) Sch.
Bip.].

1 1 Oceania Oceania 12 0

53. Moringa Moringa oleifera 
Lam. and M. 
stenopetala 
(Baker f.) Cufod.

2 1,2,3,4 Africa, Asia Asia, Africa, 
Americas

Arora (2014), 
Kahane 
et al. (2013), Kasolo 
et al. (2018), Kour 
et al. (2018), Li et al. 
(2018), National 
Research Council 
(2006), Padulosi 
et al. (2011), Raneri 
et al. (2019), Tyagi 
et al. (2017)

3; 8; 9; 11; 12 M. oleifera = 10
M. 

stenopetala = 7

54. African 
Alpine 
bamboo

Oldeania alpina 
(K.Schum.) 
Stapleton

1 6 Africa Africa 12 6

55. Ostrich 
fern

Onoclea 
struthiopteris 
Roth

1 1 Europe, Asia, 
Americas

Europe, Asia, 
Americas

Łuczaj et al. (2012) 12 2

56. Oca Oxalis tuberosa 
Molina

3 5 Americas Americas Hernandez-Bermejo 
and León (1992)

3; 9; 12 2

57. 
Pandanus, 
screwpine

Pandanus 
tectorius 
Parkinson ex 
Du Roi

3 3 Asia, Oceania Asia, Oceania Thomson, Cruz-de 
Hoyos, Cummings, 
and Schultz (2016)

6

TA B L E  3   (Continued)
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Common 
name(s) Scientific name Source

Plant 
part(s) 
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Region(s) of 
origin

Main regions 
of natural 
occurrence or 
cultivation Key reference(s)

Target of projects, 
included in 
priority lists or 
focus of efforts by 
key international 
agencies (Table S1) Number of uses

58. Proso 
millet

Panicum 
miliaceum L. and 
P. decompositum 
R.Br.

2 4 Asia, Europe, 
Oceania

Asia, Europe, 
Oceania

Arora (2014), 
Kahane 
et al. (2013), Li 
et al. (2018), Raneri 
et al. (2019), Tyagi 
et al. (2017)

3; 12 P. miliaceum = 5,  
P. 
decompositum  
= 0

59. Guarana Paullinia cupana 
Kunth

1 3,4 Americas Americas Hernandez-Bermejo 
and León (1992)

3; 12 4

60. Perilla Perilla frutescens 
(L.) Britton

2 1,4 Asia Asia Arora (2014), Li 
et al. (2018), Tyagi 
et al. (2017)

3; 12 5

61. Tepary 
bean

Phaseolus 
acutifolius 
A.Gray

2 4 Americas Americas Hernandez-Bermejo 
and León (1992)

4; 12 5

62. Runner 
bean

Phaseolus 
coccineus L.

2 4 Americas Americas, Asia Arora (2014), 
Hernandez-
Bermejo and 
León (1992), Tyagi 
et al. (2017)

12 6

63. Moso 
bamboo

Phyllostachys 
edulis (Carrière) 
J.Houz.

1 6 Asia Asia Arora (2014), Li et al. 
(2018)

4

64. 
Jaboticaba

Plinia rivularis 
(Cambess.) 
Rotman and P. 
cauliflora (Mart.) 
Kausel

2 3 Americas Americas Hernandez-Bermejo 
and León (1992)

3; 12 P. rivularis = 0, 
P. cauliflora = 2

65. Zapote Pouteria 
sapota (Jacq.) 
H.E.Moore & 
Stearn

1 3 Americas Americas Hernandez-Bermejo 
and León (1992)

3; 12 2

66. Mesquite Prosopis L. [incl.: 
P. alba Griseb., 
P. chilensis 
(Molina) Stuntz, 
P. juliflora (Sw.) 
DC.].

3 4 Americas, 
Africa, Asia

Americas, 
Africa, Asia

Arora (2014), 
Wickens 
et al. (1989)

3; 12 7 (14 species)

67. Bracken Pteridium 
aquilinum L. 
Kuhn s.l.

1 1 Cosmopolitan Cosmopolitan Liu, Wujisguleng, 
and Long (2012)

12 7

68. Oak Quercus L. 1 3 Europe, Asia, 
Africa

Europe, Asia, 
Africa, 
Americas

Łuczaj et al. (2012) 12 4 (9 species)

69. Rasberry Rubus L. [incl.: 
R. hawaiensis 
A.Gray, R. 
macraei A.Gray, 
R. rosifolius Sm., 
R. parvifolius L.].

3 3 Asia, Oceania Asia, Oceania Arora (2014), Łuczaj 
et al. (2012)

3; 12 3 (36 species)
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Common 
name(s) Scientific name Source

Plant 
part(s) 
used

Region(s) of 
origin

Main regions 
of natural 
occurrence or 
cultivation Key reference(s)

Target of projects, 
included in 
priority lists or 
focus of efforts by 
key international 
agencies (Table S1) Number of uses

70. Sorrels Rumex acetosa 
L. and R. 
lapponicus 
(Hiitonen) 
Czernov

1 1 Europe, Asia, 
Americas

Europe, Asia, 
Americas

Łuczaj et al. (2012) 12 R. acetosa = 4, 
R. 
lapponicus = 0

71. 
Arrowhead

Sagittaria 
Ruppius ex L.

1 1 Europe Europe, Asia Arora (2014) 2 (5 species)

72. Elder Sambucus nigra 
L., S. canadensis 
L.

1 2,3 America, 
Africa, 
Europe, 
Americas

America, 
Africa, 
Europe, 
Americas

Łuczaj et al. (2012) 12 S. nigra = 5, S. 
canadensis = 5

73. 
Quandong

Santalum 
acuminatum 
(R.Br.) A.DC.

1 3 Oceania Oceania Arora (2014) 3; 12 6

74. Marula Sclerocarya 
birrea (A.Rich.) 
Hochst.

1 3 Africa Africa Kahane et al. (2013), 
National Research 
Council (2008), 
Ngwako, Mogotsi, 
Sacande, Ulian, and 
Mattana (2019)

3; 11; 12 10

75. Common 
golden 
thistle

Scolymus 
hispanicus L.

1 6 Europe Europe Łuczaj et al. (2012) 3; 12 2

76. Black 
salsify

Scorzonera 
hispanica L.

2 5 Europe Europe 8; 12 4

77. False 
sesame

Sesamum 
sesamoides 
(Endl.) Byng & 
Christenh.

1 1 Africa Africa Dansi et al. (2012) 3 6

78. Foxtail 
millet

Setaria italica (L.) 
P.Beauv.

2 4 Asia, Europe Asia, Europe Arora (2014), 
Kahane 
et al. (2013), Li 
et al. (2018), Raneri 
et al. (2019)

2; 3; 8; 12; 7

79. Bladder 
campion

Silene vulgaris 
(Moench) 
Garcke

1 1 Europe, 
Americas

Europe Łuczaj et al. (2012) 2

80. Cardus 
marianus

Silybum 
marianum (L.) 
Gaertn.

1 6 Europe, Asia Europe, Asia, 
Africa, 
Americas

Łuczaj et al. (2012) 4

81. Mustard Sinapis L. 1 1,4 Europe Europe, Asia, 
Africa, 
Americas

Arora (2014) 7 (S. alba)

82. Yacon Smallanthus 
sonchifolius 
(Poepp.) H.Rob.

2 5 Americas Americas Hernandez-Bermejo 
and León (1992)

3; 9; 12 2

83. 
Greenbriers

Smilax excelsa 
L., S. glyciphylla 
J.White, S. ferox 
Wall. ex Kunth

1 6 Europe, Asa, 
Oceania

Europe, Asa, 
Oceania

Tyagi et al. (2017) 12 S. excelsa = 0, 
S. 
glyciphylla = 3, 
S. ferox = 0
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Common 
name(s) Scientific name Source

Plant 
part(s) 
used

Region(s) of 
origin

Main regions 
of natural 
occurrence or 
cultivation Key reference(s)

Target of projects, 
included in 
priority lists or 
focus of efforts by 
key international 
agencies (Table S1) Number of uses

84. Tomato 
tree

Solanum 
betaceum Cav.

1 3 Americas Americas, 
Asia, Oceania

Hernandez-Bermejo 
and León (1992)

3 3

85. African 
eggplant 
and other 
names

Solanum L. [incl.: 
S. aethiopicum 
L., S. quitoense 
Lam., S. 
sessiliflorum 
Dunal, S. 
ellipticum R.Br., 
S. juzepczukii 
Bukasov, S. 
curtilobum Juz. 
& Bukasov, S. 
glaucescens 
Zucc.]

3 3 Africa, Asia, 
Americas, 
Oceania

Africa, Asia, 
Americas, 
Oceania

Kahane et al. (2013), 
National Research 
Council (2006)

3; 11; 12 4 (51 species)

86. African 
black 
nightshade

Solanum scabrum 
Mill.

3 1 Africa Cosmopolitan 3; 11 6

87. African 
yam bean

Sphenostylis 
stenocarpa 
(Hochst. ex 
A.Rich.) Harms

2 4,5 Africa Africa, Asia Arora (2014), Dansi 
et al. (2012), 
National Research 
Council, (1996), 
Tyagi et al. (2017)

3; 8; 9; 11 5

88. Jocote Spondias spp. 
(incl.: S. 
purpurea L., 
S. mombin 
L., S. dulcis 
Parkinson)

3 3 Americas Americas Hernandez-Bermejo 
and León (1992)

3; 12 6 (6 species)

89. Marsh 
woundwort

Stachys palustris 
L., S. tymphaea

1 1 Europe, Asia Europe, Asia, 
Americas

Arora (2014), Łuczaj 
et al. (2012), Tyagi 
et al. (2017)

12 0

90. Malay 
apple

Syzygium 
malaccense 
(L.) Merr. & 
L.M.Perry

2 3 Asia, 
Oceania,

Asia, Oceania Thomson 
et al. (2018)

6

91. Pindan 
walnut

Terminalia 
L. (incl.: T. 
cunninghamii 
C.A.Gardner)

1 4 Asia, 
Oceania,

Asia, Oceania Arora (2014), Tyagi 
et al. (2017)

3; 12 6 (21 species)

92. Salsify Tragopogon L. 1 6 Europe, Asia Europe, Asia, 
Americas, 
Oceania

Arora (2014), Tyagi 
et al. (2017)

3 (T. porrifolius)

93. Buffalo 
nut

Trapa L.(incl.: 
T. natans L., T. 
japonica Flerow)

1 4 Europe, Asia, 
Africa

Europe, Asia, 
Africa

Arora (2014), Turner 
et al. (2011), Tyagi 
et al. (2017)

12 T. napans = 6
T. japonica = 0

94. African 
breadfruit

Treculia africana 
Decne. ex 
Trécul

1 3 Africa Africa Kasolo et al. (2018) 2; 3; 12 7

95. Snake 
gourd

Trichosanthes 
cucumerina L.

2 3 Asia Asia Arora (2014), Li 
et al. (2018), Tyagi 
et al. (2017)

5

(Continues)
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change over the century, including how climate change might im-
pact the quality and nutritional value of edible species (Borrell 
et al., 2020). Studies in this research area have mainly focused on 
established domesticated edible crops. For example, under future 
climate-scenario drought stress conditions, Hummel et al., 2018 re-
ported that iron levels in beans (Phaseolus vulgaris) decreased, while 
levels of protein, zinc, lead, and phytic acid increased. This study also 
revealed that bean nutritional quality and yields were reduced under 
future predicted drought conditions, leading the authors to con-
clude, with supportive data from crop modeling, that current bean 
growing areas in south-eastern Africa could become unsuitable by 
2050. Given the predicted impact of future drought conditions on 
crops and, as 66% of people live with severe water scarcity for at 

least one month of the year and humans use 70% of available fresh 
water for agricultural purposes, the monitoring of water irrigation 
systems is a recommended strategy to help conserve water (Green 
et al., 2018).

Although future drought conditions have been suggested to 
increase protein levels in the legume species P. vulgaris (Hummel 
et al., 2018), in contrast, increased CO2 levels were found to reduce 
protein levels and increase omega-3 fatty acid levels in mung bean 
(Vigna mungo; Ziska, Epstein, & Schlesinger, 2009). Environmental 
factors may also impact on the nutritional quality of edible nuts, 
including almonds, pistachios, and walnuts. For example, in 29 
different cultivars, protein, phytosterol, and mineral content were 
affected, suggesting that climate change may also compromise 

Common 
name(s) Scientific name Source

Plant 
part(s) 
used

Region(s) of 
origin

Main regions 
of natural 
occurrence or 
cultivation Key reference(s)

Target of projects, 
included in 
priority lists or 
focus of efforts by 
key international 
agencies (Table S1) Number of uses

96. Morama 
bean

Tylosema 
esculentum 
(Burch.) 
A.Schreib.

2 4 Africa Africa (Mogotsi, Sacande, 
et al., 2019)

8; 12 6

97. Bulrush Typha orientalis 
C.Presl, T. 
domingensis 
Pers., T latifolia 
L.

1 6 Europe, Asia, 
Americas

Cosmopolitan Turner et al. (2011) 3; 12 T. orientalis = 5, 
 T. 
dominigensis  
= 8,  
T. latifolia = 7

98. Ulluco Ullucus tuberosus 
Caldas

2 5 Americas Americas Hernandez-Bermejo 
and León (1992)

3; 9; 12 2

99. Nettle Urtica dioica L. 
and U. massaica 
Mildbr.

1 1 Europe, Asia, 
Africa

Europe, Asia, 
Africa

(Łuczaj et al., 2012) 12 U. dioica = 7, U. 
massaica = 3

100. Small 
cranberry

Vaccinium 
spp. (incl.: V. 
oxycoccos L., 
V. floribundum 
Kunth, V. 
praestans Lamb.)

1 3 Europe, Asia, 
Americas

Europe, Asia, 
Americas

12 3 (20 species)

101. 
Bambara 
groundnut

Vigna subterranea 
(L.) Verdc.

2 4 Africa Africa, Asia, 
Oceania

Arora (2014), Dansi 
et al. (2012), 
FAO (2010), Hall 
et al. (2013), 
Kahane et al. (2013), 
National Research 
Council, (1996), 
Padulosi 
et al. (2011), Raneri 
et al. (2019)

2; 3; 4; 5; 8; 9; 
11; 12

5

102. Shea 
tree

Vitellaria 
paradoxa 
C.F.Gaertn.

1 3 Africa Africa National Research 
Council (2006)

3; 11; 12 10

Source: 1, mainly wild; 2, mainly cultivated; 3, wild and cultivated. Edible parts: 1, leaves; 2, inflorescences/flowers; 3, fruits; 4, seeds; 5, roots/tubers; 
6, stems/shoots. Number of uses according to Diazgranados et al. (2020); details on the type of uses for each species are reported in Diazgranados 
et al. (2020); 0, species not listed. When the common name of the NUS corresponds to more than one specific epithet, the number of uses is here 
reported as an average of the species listed in Diazgranados et al. (2020)

TA B L E  3   (Continued)



438  |     ULIAN et AL.

nutritional value in this food group (Rabadán, Álvarez-Ortí, & 
Pardo, 2019). Together, these findings suggest that different climatic 
factors could mediate contrasting effects on the nutritional value 
of crops, and this should be considered, separately for each spe-
cies, with respect to NUS. Although some studies conclude that 
elevated atmospheric CO2 reduces protein and mineral content in 
vegetables, CO2 can enhance vegetable yield and concentrations of 
soluble saccharides, phenolic compounds, including flavonoids, and 
vitamin C, in addition to the antioxidant capacity (Dong, Gruda, Lam, 
Li, & Duan, 2018). Furthermore, flavonol and anthocyanin levels in 
fruits may be increased by changes in expression of hydroxylases in 
response to environmental conditions, including water deficits and 
UVB radiation (Martínez-Lüscher et al., 2014).

The impact of emerging environmental stresses on biologically 
active chemicals of edible plants is important from the perspective 

of human health. For instance, extreme environmental conditions 
(late season cultivation) have been shown to increase phenolic 
and vitamin C content in some broccoli cultivars (Vallejo, Tomas-
Barberan, & García-Viguera, 2003). Higher CO2 levels also increased 
vitamin C and antioxidant capacity in lettuce, celery, and Chinese 
cabbage, although other nutrients (micro- and macro-) decreased 
(Leisner, 2020). Thus, certain phytochemicals relevant to health in 
crop plants may be positively influenced by environmental changes, 
while levels of some essential macro- and micro-nutrients may be 
negatively affected. In view of the emerging research that suggests 
that certain environmental factors could negatively impact on the 
nutritional quality of food, the potential consequences for human 
health in the long-term are concerning, particularly against the 
backdrop of the global scale of malnutrition, which includes pro-
tein-energy, vitamin and mineral deficiencies (De Onis, Monteiro, 

BOX 1 Fungi as food resources

Beyond the few species that are used in biotechnology for the production of pharmaceuticals, industrial enzymes and plastics (Howes 
et al., 2020; Prescott et al., 2018), the vast majority of fungi are underutilized. However, those in mainstream agriculture have an 
estimated annual market value of more than US$62 billion by 2023 (Knowledge Sourcing Intelligence LLP, 2017). As edible fungi are 
sources of fiber, selenium, potassium, copper, zinc, B group vitamins, and are one of the only non-animal sources of dietary forms of 
vitamin D, a deficiency of which is a risk factor for rickets in children (World Health Organization, 2019), the potential future use of ne-
glected fungi is considerable. Indeed, during their growth stage and post-harvest, mushrooms exposed to sunlight or controlled levels 
of UV radiation had increased concentrations of vitamin D2 (Cardwell, Bornman, James, & Black, 2018). The impact of UV radiation on 
the vitamin D content of mushrooms could be evaluated further as a strategy to enhance availability of dietary vitamin D, especially 
in regions where rickets or osteomalacia are health risks.
Around 2% of fungi form mutualistic mycorrhizal relationships with plants (Suz et al., 2018). Within these mutualistic relationships, 
the plant provides sugars in exchange for minerals and nutrients from the fungus. While some mycorrhizal fungi are often the most 
desirable fungi for consumption, they elude efforts, with a few exceptions, to be cultivated commercially (Boa, 2004). These desir-
able mycorrhizal species are instead foraged from the wild, based on distinct cultural practices. However, it is unknown if the impact 
of foraging on wild populations can be sustained into the future, where harvesting is likely to increase. Currently of concern is the 
Kalahari truffle (Kalaharituber pfeilii), which is sold in local markets in southern Africa, with a rapidly increasing commercial harvesting 
(Mogotsi, Tiroesele, et al. (2019) and references therein). In contrast, saprotrophic fungi are well suited to commercial myco-culture, 
and up to 200 species are known to be cultivated around the world. Over 85% of cultivated mushroom species belong to just five 
genera: Agaricus (button, portobello, and chestnut mushrooms), Lentinula (shiitake), Pleurotus (oyster mushrooms), Auricularia (jelly and 
wood ear fungi), and Flammulina (Enokitake; Royse, Baars, & Tan, 2017).
The cultivation of fungi represents an opportunity to develop valuable new crops that require low resource inputs, create little waste 
(SureHarvest, 2017), are sustainable, and can be tailored to local cultural preferences. Cultivation can be at the domestic and commu-
nity level (Martínez-Carrera et al., 1998) and has the potential to be scaled up commercially (Zhang, Geng, Shen, Wang, & Dai, 2014). 
Importantly, new species are being brought into cultivation (Rizal et al., 2016; Thongklang, Sysouphanthong, Callac, & Hyde, 2014) 
and these have economic potential beyond the value of a few internationally grown strains (Hyde et al., 2019). For example, within 
the genus Termitomyces, species such as T. microcarpus and T. clypeatus are consumed across Africa and Asia (Boa, 2004) and bring-
ing species from this genus into cultivation could be a desirable cash crop for local communities. Myco-agriculture is most diverse in 
China, with over 100 species of the 1,789 reported edible species already in cultivation and around 60% in commercial production 
(Fang et al., 2018; Zhang et al., 2014).
Finally, mycorrhizal fungal associations can also improve the nutritional quality of the edible parts of plant crops. For instance, mycor-
rhizal fungi inoculation of strawberries can increase the levels of anthocyanins and phenolic compounds, and in tomatoes can increase 
the levels of P, N, and Cu and flavour compounds (Torres, Antolín, & Goicoechea, 2018). More research is needed to understand the 
promising role that mycorrhizal fungi play in the nutritional value of edible plants, including NUS, particularly in the context of strate-
gies to produce nutritious crops in a changing climate.
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Akré, & Glugston, 1993; Green et al., 2018; https://www.who.int/
news-room/fact-sheet s/detai l/malnu trition). While biofortification 
could be one approach to mitigate the impact of climatic changes on 
food nutritional status (Green et al., 2018), more extensive scrutiny 
of the nutritional quality of crops, including NUS, in the context of 
predicted environmental challenges, should be aligned with other 
strategies for food security. In circumstances where saccharide lev-
els increase in edible species in response to climate factors (Dong 
et al., 2018), the consequences should be considered in the context 
of providing energy as a source of calories in both undernutrition 
(such as in wasting and being underweight) and obesity, with the lat-
ter associated with increased risk of certain non-communicable dis-
eases (https://www.who.int/news-room/fact-sheet s/detai l/malnu 
trition).

Potential strategies to ameliorate the effects of climate change 
on food security in the future include greater understanding of the 
global distribution of edible plants and by creating more diverse 
and climate-resilient agricultural production systems (see Table 
S1). In addition, improved knowledge of naturally stress-resistant 
plants and their broader cultivation would enable agriculture, and 
the human diet, to be diversified as one strategy for global food 
security in the changing environment (Zhang, Li, & Zhu, 2018), 
especially when aligned with methods to maintain the genetic 
diversity of crops (e.g., seed banking; Borrell et al., 2020). More 
research on elucidating the genes and processes that underlay 
the mechanisms for climate-resilience of edible species could also 
underpin future strategies to mitigate environmental challenges 
that threaten food security (Dhankher & Foyer, 2018). Indeed, 
a multi-faceted approach integrating physiology, genomics, and 
climate modeling has been proposed as important to develop a 
sustainable future food supply considering global climate change 
(Leisner, 2020).

To address the impact of climate change on nutritional security 
in the future, a model has been described (Fanzo, Davis, McLaren, & 
Choufani, 2018) to increase net nutrition in the food chain under cli-
mate change. This model encompasses agriculture practices to cul-
tivate improved varieties, and new production locations to minimize 
loss of biodiversity, through to processing, distribution, marketing 
(including promotion of food benefits), and consumption strategies 
to maximize nutrition availability for vulnerable groups. A positive 
correlation between high agricultural diversity and high nutrient 
production, irrespective of farm cultivation size, has been suggested 
from global examination of food commodities (Herrero et al., 2017), 
indicating that one strategy to protect availability of nutrients may 
be through promoting agricultural diversity, and therefore, dietary 
range to support health.

Emerging evidence shows climate change impacts not only on 
food quality, nutrition, safety (Borrell et al., 2020), and cost, but also 
on the ability to transport food from “farm to fork,” thus, for many 
communities, restricting their access to an adequate dietary range 
(Fanzo et al., 2018). These factors combined will limit the availability 
of nutrients with potentially serious consequences for the health of 
humanity.

5  | CONCLUSIONS

In this article, we provide an overview of the global state of edible 
plants, highlighting their diversity, and distribution among vascular 
plant families from around the world. We emphasize that this di-
versity stands in striking contrast with the few hundred food crops, 
originating from main domestication centers, that mainstream ag-
riculture currently relies on. By integrating the other uses, we also 
highlight the additional ecosystem services these plants provide 
that are important for people's livelihoods and wellbeing (Díaz 
et al., 2020). While more work is needed to assess the actual con-
servation status of edible plants, ex situ conservation (and particu-
larly seed banking) is already playing an important role in preserving 
them. However, information on the functional and genetic diversity 
of stored seed collections is limited and alternative ex situ conser-
vation approaches, such as cryopreservation, need to be developed 
for those species with non-bankable seeds (Li & Pritchard, 2009).

We highlight key NUS of edible plants with the potential to im-
prove the quality, resilience, and self-sufficiency of food production, 
while deploying a more sustainable local food supply. We also con-
sider the importance of fungi, which could enhance the nutritional 
value of foods, through the provision of beneficial vitamins and min-
erals, and which have potential to be developed into valuable and 
sustainable crops.

However, before NUS can become successful crops of the fu-
ture, many knowledge gaps need to be filled relating to their biology 
and ecology. In addition, research efforts are needed on understand-
ing the impacts of climate change on NUS, to enable the develop-
ment of effective and sustainable agricultural practices for future 
climate conditions (Turner et al., 2011; Ulian, Pritchard, Cockel, & 
Mattana, 2019). Although methods and tools developed by farm-
ers and researchers for the cultivation of major crops can be easily 
adapted to improve the cultivation of NUS, these should be inte-
grated with local traditional knowledge on uses and practices to help 
protect the environment and promote the conservation of biodiver-
sity (Casas et al., 2016; Horlings & Marsden, 2011; Patel, Sharma, & 
Singh, 2020). To further aid the development of NUS as future crops, 
research programs need to be strengthened and the necessary re-
search infrastructure put in place, including addressing shortages 
in relevant fields (FAO, 2019). This will require improved mech-
anisms for exchanging information rapidly and effectively, as well 
as increased awareness of the importance of crop diversity among 
and between stakeholder groups. One way this could be achieved 
is through participatory decision-making processes (Padulosi 
et al., 2011) and by putting in place effective legal and policy frame-
works (FAO, 2019; Noorani et al., 2015) that are accompanied by 
economic incentives and subsidies to support the development of 
NUS (Padulosi, Cawthorn, et al., 2019).

Biodiversity offers a largely untapped resource to support our 
planet and improve our lives and has the potential to “end hunger, 
achieve food security and improve nutrition and promote sustain-
able agriculture,” as articulated in the UN SDG 2, through the de-
velopment of climate-resilient crops and the more widespread use 

https://www.who.int/news-room/fact-sheets/detail/malnutrition
https://www.who.int/news-room/fact-sheets/detail/malnutrition
https://www.who.int/news-room/fact-sheets/detail/malnutrition
https://www.who.int/news-room/fact-sheets/detail/malnutrition
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of localized crop species (Antonelli, Smith, & Simmonds, 2019), such 
as the NUS plants highlighted in this article. However, in order for 
these natural resources to be unlocked, strengthening, and devel-
oping collaborations between producers, researchers, local commu-
nities, NGOs, “influencers,” media, and governments are key factors 
for success.
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